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X, = x, cos 8 +y, sin 8, =—60.26(0.9151) + 39.74(0.4032) = -39.12 mm
Y4 =y, cos 0 —x, sin 8 = 39.74(0.9151) - (—60.26)(0.4032) = 60.66 mm
and
Xp = 19.74(0.9151) — 80.26(0.4032) = -14.30 mm
Yp =-80.26(0.9151) ~ 19.74(0.4032) = -81.41 mm
The moment components are
M, =M sin ¢ = 4.80 x 10°(0.9941) =4.772 kN +m
My =—M cos ¢ =—4.80 x 10%(-0.1084) = 520 Nem

The stresses at A and B, calculated using Eq. 7.4, are

o= MY, MyX,

Ty T,
4772 x 105(60.66) _ 0.520 % 10°(~39.12)
3212 % 10° 0.574 x 10°

= 125.6 MPa
MYp MyXp

Op =
5 Iy Iy

4772 105(-81.41)  0.520 x 10%(~14.30)
3212 x 10° 0.574 x 10°
= ~108.0 MPa

These values for 64 and 0 agree with the values calculated in part (a).

EXAMPLE 7.5 | A T-shaped cantilever beam of structural steel is subjected to a transverse load P at its free end (Fig-
T-Beam | ure E7.5). The beam is 6.1 m long. According to the Tresca yield criterion, the material yields when
the maximum shear stress reaches 165 MPa. Determine the maximum load P.

[«——200 mm
A B Y
t 1

3

6.25 mm

30°

P

x <
300 mm [

|

FIGURE E7.5




280 CHAPTER7 BENDING OF STRAIGHT BEAMS

Solution | First calculate the location of the centroid y and the moments of inertia 7, and I,. The centroid is
found relative to the bottom of the stem. Since the calculations are routine, only the results are given:

A = 30859 mm°, I. = 29.94x 10 °m*

X

3 = 207.64mm, I, = 4.167x 10 °m* @

I,=0

Also, by Figure E7.5,

M, = -6.1(_{%) = -5.283P
(b)
1
M, = —6.1(§P) = _3.05P
Hence, by Egs. (a), (b), and 7.4,
o =M Myx _ 528Py . 3.05Px

S P N 2994x10° 4.167x10°°

The critical points in the cross section are points A, B, and C in Figure E7.5. At these locations, the
flexural stress is the maximum (unordered) principal stress.

AtA, x = +100mm, y=-9236mm, o, = 89.49x10°P
AtB, x=-100mm, y=-9236mm, 0, = -56.90x10°P
AtC, x=-3125mm, y=207.64mm, o, = -38.93x10°P

The minimum principal stress is zero at A, B, and C. Hence, yielding will occur at A when

3
T = 165%10° Pa = |Fmax(4) ~ Opin(4)] _ 8949107,
2 | 2

or

P = 3688 N = 3.69 kN

7.3 DEFLECTIONS OF STRAIGHT BEAMS SUBJECTED
TO NONSYMMETRICAL BENDING

Consider a straight beam subjected to transverse shear loads and moments, such that the
transverse shear loads lie in a plane and the moment vectors are normal to that plane. The
neutral axes of all cross sections of the beam have the same orientation as long as the beam
material remains linearly elastic. The deflections of the beam will be in a direction perpen-
dicular to the neutral axis. It is relatively simple to determine the component of the deflec-
tion parallel to an axis, say, the y axis. The total deflection is easily determined once one
component has been determined.

Consider the intersection of the y—z plane with the beam in Figure 7.9. A side view
of this section of the deformed beam is shown in Figure 7.10. Before deformation, the
lines FG and HJ were parallel and distance Az apart. In the deformed beam, the two
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X

y
Y
G

FIGURE 7.10 Deflection of a nonsymmetrically loaded beam.

straight lines FG and HJ represent the intersection of the y-z plane with two planes per-
pendicular to the axis of the beam, a distance Az apart at the neutral surface. Since plane
sections remain plane and normal to the axis of the beam, the extensions of FG and HJ
meet at the center of curvature (", The distance from 0’ to the neutral surface is the radius
of curvature R, of the beam in the y—z plane. Since the center of curvature lies on the neg-
ative side of the y axis, R, is negative. We assume that the deflections are small so that
1/R,=d 2y/dz?, where v is the y component of displacement. Under deformation of the
beam, a fiber at distance y below the neutral surface elongates an amount e,, = (Az)e,,.
Initially, the length of the fiber is Az, By the geometry of similar triangles,

A (ADe,,
Ry y
Dividing by Az, we obtain
2
€
-1 = where =9 (7.19)
Ry Y Ry dz
For linearly elastic behavior, Eqgs. 7.18 and 7.12, with x = 0, and Eq. 7.7 yield
€z _ M, =_Mny+My1xy
which, with Eq. 7.19, yields
v M, . MM 720

at Bl —lymne) gy g )

Note the similarity of Eq. 7.20 to the elastic curve equation for symmetrical bend-
ing. The only difference is that the term I has been replaced by (I, — I, tanar). The solution
of the differential relation Eq. 7.20 gives the y component v of the total deflection at any
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EXAMPLE 7.6
Channel Section
Simple Beam

Solution

FIGURE 7.11 Components of deflection of a nonsymmetrically loaded beam.

section of the beam. As is indicated in Figure 7.11, the total deflection & of the centroid at
any section of the beam is perpendicular to the neutral axis. Therefore, the x component of

dis
U= —vtang .21

and the total displacement is

= il % = (7.22)
cos o

Let the channel section beam in Figure E7.3 be loaded as a simple beam with a concentrated load P =
35.0 kN acting at the center of the beam. Determine the maximum tensile and compressive stresses in
the beam if ¢ = 57/9. If the beam is made of an aluminum alloy (E = 72.0 GPa), determine the maxi-
mum deflection of the beam.

Analogous to the solution of Example 7.3, we have

I, 39,690,000 S«
= —Zcotp = — 22090000 ST _ 9977
e = —yee ¢ = ~36:730.000 '
o = 0.2239 rad
M= ’l4L. - —35-0(4300) = 2625 kN +m

M_ = Msing = 2585kNem

X

_ 25,850,000[82 — (—70)(0.2277)]

Oension = 39 .690.000 = 63.8 MPa
_ 25,850,000{-118 — 70(0.2277)] _
o'c:ompression - 39,690,000 ) = -87.2 MPa

Since the deflection of the center of a simple beam subjected to a concentrated load in the center is
given by the relation PL3/48EI, the y component of the deflection of the center of the beam is

_ PL’sing _ 35,000(3000)°sin57/9

- - = 678
ABEI_  43(72,000)(39,690,000) o

The lateral deflection is
u = —vtano = —6.78(0.2277) = -1.54 mm

Finally, the total deflection is

S = 142+v2 = 6.95 mm



EXAMPLE 7.7
Cantilever
I-Beam

Solution
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A cantilever beam has a length of 3 m with cross section indicated in Figure E7.7. The beam is con-
structed by welding two 40 mm by 40 mm steel (E = 200 GPa) bars longitudinally to the $-200 x 27
steel I-beam (I, = 24 x 10® mm* and /, = 1.55 x 10° mm*). The bars and I-beam have the same yield
stress, Y = 300 MPa. The beam is subjected to a concentrated load P at the free end at an angle
¢ = m/3 with the x axis. Determine the magnitude of P necessary to initiate yielding in the beam and
the resulting defiection of the free end of the beam.

—>| ,4—40 mm
¥
40 vmm

120 mm

FIGURE E7.7

Values of /,, I, and I, for the composite cross section can be obtained using the procedure outlined
in Appendix B, which gives
4

I, = 5643x10° mm®, I, = 18.11x10° mm
6 4
I, = 22.72x 10" mm
The orientation of the neutral axis for the beam is given by Eq. 7.17. We find

Ly—T,c0t9 2272 x 10° - 5643 x 10°(0.5774) _
I,—1,yc0td 1811 x10°—22.72 x 10°(0.5774)
2.039 rad = 116.8°

tanox = -1.9759

[24

The orientation of the neutral axis n—n is indicated in Figure E7.7. The maximum tensile stress occurs
at point A; the magnitude of the stress is obtained using Eq. 7.18.

M = 3P
M_ = Msing = -2.598P
M —x,tan@
()'A =Y = M
Ix—lxyta.na
Y(Ix—lxytana)

(~2.598 X 10°) (4 — X, tan @)

_ 300[56.43 x 10° - 22.72 x 10°(=1.975N)] _ 39 3 kv
~2.598 x 10°[- 120 - (-91)(~1.9759)]

Since the deflection of the free end of a cantilever beam subjected to symmetrical bending is given by
the relation PyL3/ 3EI, the y component of the deflection of the free end of the beam is
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_ __ PL’ing
3E(,~1,,tan0)
_ 39.03 x 10°(3 x 10%)(0.8660)

= 3 % < = 17.33 mm
3(200 x 107)[56.43 x 107 ~22.72 x 10 (~1.9759)]

Hence,
u = —vtano = 34.25 mm

and the total displacement of the free end of cantilever beam is

8= Ju'+v? = 3839 mm

7.4 EFFECT OF INCLINED LOADS

EXAMPLE 7.8
An Unsuitable
Beam

Solution

Some common rolled sections such as I-beams and channels are designed so that [ is
many times greater than /,, with /,, = 0. Equation 7.17 indicates that the angle & may be
large even though ¢ is nearly equal to /2. Thus, the neutral axis of such I-beams and
channels is steeply inclined to the horizontal axis (the x axis) of symmetry when the plane
of the loads deviates only slightly from the vertical plane of symmetry. As a consequence,
the maximum flexure stress and maximum deflection may be quite large. These rolled sec-
tions should not be used as beams unless the lateral deflection is prevented. If lateral
deflection of the beam is prevented, nonsymmetrical bending cannot occur.

In general, however, I-beams and channels make poor long-span cantilever beams.
The following example illustrates this fact.

An $-610 x 134 I-beam (I, = 937 x 105 mm* and /, = 18.7 x 10° mm") is subjected to a bending
moment M in a plane with angle ¢ = 1.5533 rad; the plane of the loads is 1° (#/180 rad) clockwise
from the (y, z) plane of symmetry. Determine the neutral axis orientation and the ratio of the maxi-
mum tensile stress in the beam to the maximum tensile stress for symmetrical bending.

The cross section of the I-beam with the plane of the loads is indicated in Figure E7.8. The orienta-
tion of the neutral axis for the beam is given by Eq. 7.17:

—I,cot  937x 10°(0.01746) _
I, 18.7 x 10°
o = 2423 rad

~0.8749

tan o

The orientation of the neutral axis is indicated in Figure E7.8. If the beam is subjected to a positive
bending moment, the maximum tensile stress is located at point A. By Egs. 7.13 and 7.18,

M, = Msing = 0.9998M
0.9998 M [305 — 90.5(—~0.8749)]
937 x 10°

= 4.099x 107 M @

Oy =

When the plane of the loads coincides with the y axis (Figure E7.8), the beam is subjected to symmet-
rical bending and the maximum bending stress is

oy = 22 = M = 305 107'M (b)
x  937x10
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The ratio of the stress o4 given by Eq. (a) to that given by Eq. (b) is 1.259. Hence, the maximum
stress in the I-beam is increased 25.9% when the plane of the loads is merely 1° from the symmetrical
vertical plane.

Piane of
the loads

FIGURE E7.8

7.5 FULLY PLASTIC LOAD FOR NONSYMMETRICAL
BENDING

A beam of general cross section (Figure 7.12) is subjected to pure bending. The material
in the beam has a flat-top stress—strain diagram with yield point Y in both tension and com-
pression (Figure 4.4a). At the fully plastic load, the deformations of the beam are
unchecked and continue.

In contrast to the direct calculation of fully plastic load in symmetrical bending
(Section 4.6), an inverse method is required to determine the fully plastic load for a beam
subjected to nonsymmetrical bending. Although the plane of the loads is generally speci-
fied for a given beam, the orientation and location of the neutral axis, when the fully
plastic moment is developed at a given section of the beam, must be determined by trial
and error. The analysis is begun by assuming a value for the angle o (Figure 7.12). The

Plane of the loads

Neutral
axis

FIGURE 7.12 Location of a neutral axis for fully plastic bending of a nonsymmetrically loaded
beam.
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EXAMPLE 7.9
Fully Plastic
Moment for

Nonsymmetrical
Bending

Solution

CHAPTER 7 BENDING OF STRAIGHT BEAMS

neutral axis is inclined to the x axis by the angle &, but it does not necessarily pass through
the centroid as in the case of linearly elastic conditions. The location of the neutral axis is
determined by the condition that it must divide the cross-sectional area into two equal
areas. This follows because the yield point stress is the same for tension and compression,
and so the area At that has yielded in tension must be equal to the area A that has yielded
in compression. In other words, the net resultant tension force on the section must be equal
to the net resultant compression force.

The yield stress Y is uniform over the area At that has yielded in tension; the resultant
tensile force Py = YAy is located at the centroid Ct of Ay. Similarly, the resultant compressive
force P =YA is located at the centroid Cc of A . The fully plastic moment Mp is given by

Mp = YAd = %1 (7.23)
where A is the total cross-sectional area and d is the distance between the centroids Cy and
Cc as indicated in Figure 7.12. A plane through the centroids C-r and C is the plane of the
loads for the beam. In case the calculated angle ¢ (Figure 7.12) does not correspond to the
plane of the applied loads, a new value is assumed for o and the calculations are repeated.
Once the angle ¢ (Figure 7.12) corresponds to the plane of the applied loads, the magni-
tude of the fully plastic load is calculated by setting the moment caused by the applied
loads equal to Mp given by Eq. 7.23.

A steel beam has the cross section shown in Figure E7.9. The beam is made of a steel having a yield
point stress ¥ = 280 MPa. Determine the fully plastic moment for the condition that the neutral axis
passes through point B. Determine the orientation of the neutral axis and the plane of the loads.

Plane of the loads

rd
¥
=—3%- 40 mm | //
/B
.‘\ _I

Ag |

9 |

1
B 60 mm

/ TR

FIGURE E7.9

The neutral axis must divide the cross section into two equal areas since the area that has yielded in
tension A must equal the area that has yielded in compression A. The neutral axis bisects edge AC.
Therefore,

30
t ===15
an o 30
a = 0.9828 rad

The plane of the loads passes through the centroids of area ABD and BCD. The centroids of these
areas are located at (2?0, ~10) for ABD and (—2?0, 10) for BCD. Therefore,
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20_(20
3 3
tanff = ———— = 0.6667
B 10— (-10)
B = 0.5880 rad

¢ =7+ = 2.1588 rad
2

The fully plastic moment Mp is equal to the product of the force on either of the two areas (A or Ac)
and the distance d between the two centroids:

£
|

PROBLEMS

2
= J(zo-%") +(30-10)% = 24.04 mm

Mp = ArYd = %(40)(30)(280)(24.04) = 4.039x10°N+m
4039kNem

Since the orientation of the neutral axis is known a priori, iteration is not necessary in this example.

Section 7.1

7.1. A box beam has the cross section shown in Figure P7.1.
The allowable flexural stress is ¢,, = 75 MPa. Determine the
maximum allowable bending moment M,

—|<—60 mm—>|

30 mm

—f

40 mm

X—ly l

80 mm

FIGURE P7.1

7.2. The T-section beam shown in Figure P7.2 is subjected to a
positive bending moment M, = 5.0 kN ¢ m. Determine the max-
imuin tensile and compressive flexural stresses for the member
and the total tensile force acting on the cross section.

<100 mm —>|
[__—1%imm

]

100 mm

FIGURE P7.2

7.3. The cross section of a modified I-section beam is shown in
Figure P7.3. A positive bending moment causes a maximum
compressive flexural stress in the beam of magnitude 50 MPa.
Determine the magnitude of M, and the maximum tensile flex-
ural stress for the cross section.

'4—50mm—>1_+_

10 mm
10 mm
x
40 mm
y
10 mm
30 mm

FIGURE P7.3

7.4. The cross section of a modified box-section beam is shown
in Figure P7.4. A positive bending moment M, = 80 kN « m is
applied to the beam cross section. Determine the magnitude of
the maximum flexural stress for the section.

7.5. An aircraft wing strut is made of an aluminum alloy (£ =
72 GPa and Y = 300 MPa) and has the extruded cross section
shown in Figure P7.5. Strain gages, located at 55 mm and
75 mm below the top of the beam, measure axial strains of
-0.00012 and 0.00080, respectively, at a section where the pos-
itive moment is M, = 6.0 kN ¢ m. Determine the maximum ten-
sile and compressive flexural stresses in the beam cross section,
the location of the neutral axis, and the moment of inertia of the
cross section,
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’<—150 mm—»’ +

25 mm
100 mm T

25 mm-—> 100 mm
— ;

y 75 mm

FIGURE P7.4

mm

FIGURE P7.5

7.6. The simple beam, loaded as shown in Figure P7.6, is made
of yellow pine. The cross section is 150 mm wide and 300 mm
deep. The uniformly distributed load w includes the weight of
the beam. Determine the maximum tensile and compressive
flexural stresses for the section of the beam located 1.0 m from
the right end.

4.0 kN
w = 7.0 kN/m
HIIEEEEEEN I]
e Ay
:4-- 1.0 m—fe—o — 3.0m —
FIGURE P7.6

7.7. A cantilever beam is made by nailing together three boards
of cross section 50 mm by 150 mm (Figure P7.7). It is sub-
jected to an end load P = 8.0 kN. Determine the magnitude and
location of the maximum tensile flexural stress for the beam
cross section and the maximum tensile flexural stress in the
center board.

f——— — 25m >

FIGURE P7.7

7.8. For the beam of Problem 7.7, what is the maximum tensile
load in the top board?

7.9. The simple T-section beam in Figure P7.9 is subjected to a
uniform load w = 60 kN/m, including the weight of the beam.
Determine the magnitude of the maximum flexural stress at the
top of the beam, at the junction between the web and flange,
and at the bottom of the beam.

50 mm
- |-1—

T T 111117 ¢

225 mm

T
50 mm
] 'y
j— =

150 mm

—_—

30m

FIGURE P7.9

7.10. The simple beam shown in Figure P7.10 has a circular
cross section of diameter d = 150 mm. Determine the magni-
tude of the maximum flexural stress in the beam.

30.0 kN
8.0 kN/m

ERERRENER

l 3.0m e

FIGURE P7.10

7.11. For the overhang beam shown in Figure P7.11, determine
the maximum tensile flexural stress on sections just to the left
and to the right of the section on which the 16.0 kN ¢ m couple
acts and their locations in the cross section. The flanges and the
web of the cross section are all 20 mm thick.

T L 16.0kN| 100 mm
FENRREN | oL =
140 mm
AN L ﬁ 1 Y

«-2.0m »L 2.0 ifi=ste- 210 M-sl=2.0 i1~

FIGURE P7.11

7.12, A double overhang beam has a cross section as shown in
Figure P7.12. The vertical stems of the section are 10 mm thick



and the horizontal flange is 20 mm thick. For the loads shown,
determine the maximum values for the tensile and compressive
stresses in the beam and their locations.

o 16.0 kN 4.0 kN
4.0 kN/m l 100 mm
I
L ! )
] L
' A £ ‘ | \ 120 mm
L i
f— 2.0 m—>= 3.0m— ""!* | )
1.0m 1.0m

FIGURE P7.12

7.13. A beam is built up by welding four L64 X 64 x 9.5 angles
to a plate having cross-sectional dimensions 200 mm by 10 mm
(Figure P7.13). Properties for the angle section are given in
Table A.5 of Appendix A. The allowable flexural stress is
60 MPa. Determine the magnitude of the allowable bending

[l

200 mm > =10 mm

l l \/L64x64><9.5

FIGURE P7.13

7.14. A beam is built up by welding a C150 x 19 channel to a
W310 x 33 wide-flange section as shown in Figure P7.14.
Properties for the wide-flange section and channel are given in
Tables C.1 and C.2 of Appendix C. The maximum allowable
moment is M, = 20 kN ¢ m. Determine the maximum tensile
and compressive flexural stress for the cross section.

Section 7.2

7.17. A steel (Y = 250 MPa) cantilever beam has a design length
of 2 m. A cable hoist hangs from the free end of the beam and is
designed to lift a maximum load of 4.0 kN. In application, it is
estimated that the cable may swing from the vertical by as
much as 15°. Two cross sections are considered for the design
(Figure P7.17). One cross section is that of a W130 x 24 wide
flange with area 3020 mm’ and cross-sectional dimensions
shown (fillets are ignored). The other cross section is a rectan-
gular tube of constant thickness and the same cross-sectional
area as the wide-flange section. Determine the factor of safety
against yielding for each beam. Consider flexural stresses only
and neglect fillets and any dynamic effects resulting from
swinging of the load.

7.18. A timber member 250 mm wide by 300 mm deep by
4.2 m long is used as a simple beam on a span of 4 m. It is sub-
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C150x 19

W310 x 33

FIGURE P7.14

7.15. The beam in Figure P7.15 has the cross section shown in
Figure P7.13. Determine the maximum flexural stresses at the
left support and at the center of the beam. Neglect the weight of
the beam.

P P P

SO

> 1.0ml—2.0m—st«—2.0m—1.0 m

FIGURE P7.15

7.16. The beam in Figure P7.16 has the cross section shown in
Figure P7.14. A load P = 20 kN is applied at its center and it is
supported by distributed loads of magnitude w. Determine the
maximum tensile and compressive flexural stresses that act on
the section 1.5 m from the left end and at midspan of the beam.

EEEENE
e—1.0 m—

FIGURE P7.16

10m 1.0m—>le—1.0m—

{<——-127 mm—>1 80 mm
127 mm 6.1 mm 111 mm
9.1 mm

FIGURE P7.17

jected to a concentrated load P at midspan. The plane of the
loads makes an angle ¢ = 57/9 with the horizontal x axis. The
beam is made of yellow pine with a yield stress Y = 25.0 MPa.
The beam has been designed with a factor of safety SF = 2.50
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against initiation of yielding. Determine the magnitude of P and
the orientation of the neutral axis.

7.19. The plane of the loads for the rectangular section beam in
Figure P7.19 coincides with a diagonal of the rectangle. Show
that the neutral axis for the beam cross section coincides with
the other diagonal.

FIGURE P7.19

7.20. In Figure P7.20 let b = 300 mm, 4 = 300 mm, ¢ =
25.0 mm, L =2.50 m, and P = 16.0 kN. Calculate the maximum
tensile and compressive stresses in the beam and determine the
orientation of the neutral axis.

FIGURE P7.20

7.21. In Figure P7.20 let b = 200 mm, # = 300 mm, ¢ =
25.0 mm, L = 2.50 m, and P = 16.0 kN. Calculate the maximum
tensile and compressive stresses in the beam and determine the
orientation of the neutral axis.

7.22. In Figure P7.22 let b = 150 mm, ¢ = 50.0 mm, h =
150 mm, and L = 2.00 m. The beam is made of a steel that has a
yield stress ¥ = 240 MPa. Using a factor of safety of SF = 2.00,
determine the magnitude of P if ¢ = 271/9 from the horizontal x
axis.

FIGURE P7.22

7.23. A simple beam is subjected to a concentrated load P =
4.00 kN at the midlength of a span of 2.00 m. The beam cross
section is formed by nailing together two 50 mm by 150 mm
boards as indicated in Figure P7.23. The plane of the loads
passes through the centroid of the cross section as indicated.
Determine the maximum flexure stress in the beam and the ori-
entation of the neutral axis.

Plane of the load

A

|
100 mm

e

&b 150 mm

|

FIGURE P7.23

7.24. Solve Problem 7.23 if ¢ = 1.90 rad.

7.25. A C-180 X 15 rolled steel channel (/, = 8.87 x 10° mm®,
depth = 178 mm, width = 53 mm, and xp = 13.7 mm) is used as
a simply supported beam as, for example, a purlin in a roof
(Figure P7.25). If the slope of the roof is % and the span of the
purlin is 4 m, determine the maximum tensile and compressive
stresses in the beam caused by a uniformly distributed vertical
load of 1.00 kN/m.

7.26. Two rolled steel angles (I, = 391 x 10° mm*, I, =
912x 10° mm*, 1) ;=349 x 10> mm*, and A = 1148 mm’)



53 mm

13.7 mm

X

Plane of
the load

FIGURE P7.25

are welded to a 200 mm by 10 mm steel plate to form a com-
posite Z-bar (Figure P7.26). The Z-bar is a simply supported
beam used as a purlin in a roof of slope ! The beamhasa span
of 4.00 m. The yield stress of the steel in the plate and angles is
¥ = 300 MPa. The beam has been designed using a factor of
safety of SF = 2.50 against initiation of yielding. If the plane of
the loads is vertical, determine the magnitude of the maximum
distributed load that can be applied to the beam.

Plane of
the load

FIGURE P7.26

7.27. A steel Z-bar is used as a cantilever beam having a length
of 2.00 m. When viewed from the free end toward the fixed end
of the beam, the cross section has the orientation and dimen-
sions shown in Figure P7.27. A concentrated load P = 14.0 kN
acts at the free end of the beam at an angle ¢ = 1.25 rad. Deter-
mine the maximum flexure stress in the beam.

80 mm
20 mm — '<——> +
20 mm
X 200 mm
8O M {11 100 mm
1
20 mm y

FIGURE P7.27
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7.28. An extruded bar of aluminum alloy has the cross section
shown in Figure P7.28. A 1.00-m length of this bar is used as a
cantilever beam. A concentrated load P = 1.25 kN is applied at
the free end and makes an angle of ¢ = 57/9 with the x axis.
The view in Figure P7.28 is from the free end toward the fixed
end of the beam. Determine the maximum tensile and compres-
sive stresses in the beam.

l<—30 mm——l_i

[ 10mm |
0 _¥

FIGURE P7.28

7.29. An extruded bar of aluminum alloy has the cross section
shown in Figure P7.29. A 2.10-m length of this bar is used as a
simple beam on a span of 2.00 m. A concentrated load P =
5.00 kN is applied at midlength of the span and makes an angle
of ¢ = 1.40 rad with the x axis. Determine the maximum tensile
and compressive stresses in the beam.
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FIGURE P7.29

7.30. A cantilever beam has a right triangular cross section and
is loaded by a concentrated load P at the free end (Figure
P7.30). Solve for the stresses at points A and C at the fixed end
ifP=4.00kN, h =120 mm, b=75.0 mm, and L = 1.25 m.

7.31. A girder that supports a brick wall is buiit up of an
$-310x 47 I-beam (4; = 6030 mm?, I, = 90.7 x 105 mm*,
and I, =3.90x 10° mm®), a C-310x 31 channel (A, = 3930 mm?,
I,,=53.7x10°mm* and I ;, = 1.61 x 10° mm*), and a cover
plate 300 mm by 10 mm riveted together (Figure P7.31). The
girder is 6.00 m long and is simply supported at its ends. The
load is uniformly distributed such that w = 20.0 kN/m. Deter-
mine the orientation of the neutral axis and the maximum ten-
sile and compressive stresses.

7.32. A load P = 50 kN is applied to a rolled steel angle (I, =
I,= 570 x 10° mm*, [, = -332.5 x 10° mm®, and A =
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FIGURE P7.30
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1148 mm?) by means of a 76 mm by 6 mm plate riveted to the
angle (Figure P7.32). The action line of load P coincides with
the centroidal axis of the plate. Determine the maximum stress
at a section, such as AA, of the angle. Hint: Resolve the load P
into a load (equal to P) at the centroid of the angle and a bend-
ing couple.
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FIGURE P7.32

7.33. The beam shown in Figure P7.33 has a cross section of
depth 60 mm and width 30 mm. The load P and reactions R,

and R, all lie in a plane that forms an angle of 20° counter-
clockwise from the y axis. Determine the point in the beam at
which the maximum tensile flexural stress acts and the magni-
tude of that stress.

P =3.00 kN 20°

800 mm t
R, R,

FIGURE P7.33

7.34. A beam has a square cross section (Figure P7.34).
a. Determine an expression for 6, in terms of M, &, and .
b. Compare values of Gy, for y=0, 15, and 45°.
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FIGURE P7.34

7.35. Consider the beam shown in Figure P7.35.
a. Derive an expression for 0,,, in terms of M, A, and .
b. Compare values of o, for y=0, 30, 45, 60, and 90°.
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FIGURE P7.35

7.36. An I-beam has the cross section shown in Figure P7.36.
The design flexural stress is limited to 120 MPa. Determine the
allowable bending moment M.
7.37. A T-beam has the cross section shown in Figure P7.37.
The design flexural stress is limited to 150 MPa. Determine the
allowable bending moment M.
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7.38. A beam has an isosceles triangular cross section (Figure
P7.38). The maximum flexural stress is limited to 90 MPa.
Determine the magnitude of the allowable bending moment M.

mm

FIGURE P7.38

Section 7.3

7.41. Determine the deflection of the beam in Problem 7.18.
E =12.0 GPa for the yellow pine.

7.42. The beam in Problem 7.20 is made of 7075-T6 aluminum
alloy for which £ = 71.7 GPa. Determine the deflection of the
free end of the beam.

7.43. The beam in Problem 7.21 is made of 7075-T6 aluminum
alloy for which E = 71.7 GPa. Determine the deflection of the
free end of the beam.

7.44. The beam in Problem 7.23 is made of yellow pine for
which E = 12.0 GPa. Determine the deflection at the center of
the beam,

7.45. Determine the deflection of the center of the beam in
Problem 7.25. E = 200 GPa.
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7.39. A circular cross section shaft is mounted in bearings that
develop shear reactions only (Figure P7.39). Determine the loca-
tion and magnitude of the maximum flexural stress in the beam.

FIGURE P7.39

7.40. A wood beam of rectangular cross section 200 mm by
100 mm is simply supported at its ends (Figure P7.40). Deter-
mine the location and magnitude of the maximum flexural
stress in the beam.

FIGURE P7.40

7.46. The beam in Problem 7.26 is subjected to a distributed
load of w = 6.5 kN/m. Determine the deflection at the center of
the beam. E = 200 GPa.

7.47. Determine the deflection of the beam in Problem 7.27.
E =200 GPa.

7.48. Determine the deflection of the free end of the beam in
Problem 7.28. E = 72.0 GPa.

7.49. Determine the defiection of the midspan of the beam in
Problem 7.29. E = 72.0 GPa.
7.50. Determine the deflection of the free end of the beam in
Problem 7.30. E = 200 GPa.

7.51. Determine the deflection at midspan of the beam of Prob-
lem 7.33. E =200 GPa.
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7.52. A cantilever beam of length L has the cross section shown
in Figure P7.34 and is subjected to moment M at its free end.
Determine the deflection of the free end in terms of E, L, M, v,
and 4. Consider only the case for which 0 < < 90°.

Section 7.5

7.54. The cantilever beam in Problem 7.28 is made of a low-
carbon steel that has a yield stress Y = 200 MPa.

a. Determine the fully plastic load Pp for the beam for the con-
dition that o = 0.

REFERENCE

7.53. A structural steel cantilever beam (E = 200 GPa) of length
L = 3.0 m has the cross section shown in Figure P7.36 and is
subjected to a moment M = 5 kN » m at its free end. Determine
the deflection of the free end.

b. Determine the fully plastic load Pp for the beam for the con-
dition that a = 7/6.

7.55. The cantilever beam in Problem 7.30 is made of a mild
steel that has a yield stress Y = 240 MPa. Determine the fully
plastic load Pp for the condition that & = 0.

BORESI, A. P., and CHONG, K. P. (2000). Elasticity in Engineering
Mechanics, 2nd ed. New York: Wiley-Interscience.
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